Example of an externally loaded cut

Adding an external cut.

Adding an external cut is done by copying the dynamic library (DLL) where it resides to ‘Cuttings’ folder, which holds all such cuts (you can change the name of the folder in ‘System\Project.ini’ file as the value of CuttingFolder= variable). Also, a specific library to load can be set in the ‘WinPacor.bat’ file with ‘LoadCutting file.name’ command. Sometimes it is necessary to get rid of a cut that is already loaded (for example, you may want to remove cuts that are in the standard distribution set of Pacor software). It can be done with ‘RemoveCutting –uid CLSID’ command, where CLSID is the unique identifier of the cut. The unloading command for the sample Pear cut from the standard distribution set of Pacor looks like the following:

RemoveCutting –uid FE6BC6EF-1C29-11d4-8C-66-00-10-5A-71-1E-33.

Description of example source files.

Pear cut is presented as an example of creating an external cut. The example consists of the following files:

· Pear64.cpp – the implementation of the cut itself

· Pear64.def – definitions of functions that the DLL exports

· Pear.rc – resource file

· Pear.dsp – project file to build the example with MVC 6.0

Also, the common files for all cuts are presented. To build the example or your own cuts, make sure these files are in INCLUDE and LIB paths (for .h and .lib files correspondingly). The .dll file should be in the executable path to run the software with external cuts.

· DiamCut.h – header file that contains common definitions for all cuts and for communication with other applications.

· Vector.h – header file of vector libraries: 2D and 3D points and vectors, 2D lines.

· Vector.lib and Vector.dll – implementation of vector library.

To build the example, Visual C++ 6.0 compiler is recommended, as there is a project file for it (Pear.dsp). Save header files (DiamCut.h and Vector.h) and Vector.lib library to the same directory where the source files (Pear.*) are located. For convenience, the output file path can be redefined in the project settings [Project\Settings...\Link\General\Output file name], so that it points to ‘Pacor’\Cuttings. Otherwise, copy Pear.dll to Cuttings folder manually each time it is changed and recompiled.

Description of parameters.

The example implements two Pear cuts: with 64 and 32 points on the girdle. The second cut is more suitable for optimization algorithms, as it requires less calculation. The parameters that can be changed are the same for both cuts. All exported functions have additional ‘pear’ prefix to allow static linking of the cut to the application, if necessary. A list of all independent parameters follows (there is an identifier of each parameter from the list in Diamcut.h file in the parentheses):

version – version of the cut, it is for further improvements of the cut, e.g. adding parameters.

D – diamond diameter (DC_Diameter);

h – girdle thickness in percents of D at the wide place (DC_GirdleThickness);

alph – angle of main pavilion facets, Pavilion, (DC_PavilionAngle);

beta – angle of main crown facets, Bezel, (DC_CrownAngle);

crown – size of the table in percents of D, (DC_TableDiameter);

pavilion – height of lower pavilion facets, Lower, (DC_LowerFacets);

rt – ratio of length to width, (DC_GirdleRatio);

Lh – shift of the widest point of the girdle along the direction of Pear stretching;

vLh – shift of imaginary point of all main crown (and pavilion) facets’ intersection along stretching direction;

vp – deviation of the angle on Pear point;

vs – degree of deviation of the girdle from ellipse;

culet – culet size in percents of D (DC_Culet);

x – shift of the culet to main diameter direction in percents of D (DC_CuletX);

y – shift of the culet to stretching direction after vLh is applied in percents of D (DC_CuletY);

dSquare – degree of deviation of the crown picture from the square.

To create a new cut basing on the example it is necessary to redefine unique class identifier CLSID, as a presence of two cuts with the same identifier will cause collisions during program execution. To do this, use special programs for generating such identifiers (e.g., Guidgen.exe from MS VisualC++) to prevent coincidences.

Choosing parameters, it is necessary to keep in mind related values of DC_CrownAngle, DC_CrownAngle_Table, DC_TableDiameter and DC_CrownHeight. When DC_CrownAngle is changing, the height of the crown must be constant (it is usually implied during optimization). To make the table diameter constant when crown angle is changing, use DC_CrownAngle_Table parameters. It is recommended that the developer implement both DC_CrownAngle and DC_CrownAngle_Table parameters in GetParameter and SetParameter functions. To use the cut in optimization algorithms of Pacor software, support for the following parameters is required: DC_TableDiameter, DC_PavilionDepth, DC_CrownHeight, DC_GirdleThickness and DC_GirdleRatio

Parameter presentation in the diamond panel.

To get the list of parameters that should be displayed in the full diamond panel, Pacor software calls GetCuttingInfo function with “flavor” parameter equal to DC_ParameterList. The “data” parameter has ParameterList type. Filling the parameter list, control that the number of filled parameters (count) does not exceed the size of the buffer (bufSize). listType parameter defines the type of the queried list and can be one of DC_StandardParameterList or DC_FullParameterList. Similarly, the list of parameters for printing can be obtained (DC_ReportParameterList).

For each parameter from the list, Pacor software calls GetCuttingInfo function to determine how this parameter should be presented (“flavor” equals DC_ParameterInfo). One can change the displayed name of the parameter (“name”), input-output format (“format”) and the list of parameters to determine quality group of this parameter (“colorList”) in ParameterFormat structure. Let us see details of ParameterFormat.

int state;

description of fields in this structure

int ioFunc;
(defined when PF_IOFUNC flag is set in state). The presentation of value in the field: DC_PFPercent, DC_PFAngle, DC_PFMetric, DC_PFNumber

int font;

(defined when PF_FONT flag is set in state) font which is used for displaying the name of the parameter in the diamond panel: DC_PFFontSystem, DC_PFFontSymbol

int digit;

(defined when PF_DIGIT flag is set in state) number of digits after decimal point

double left;
(defined when PF_LEFT flag is set in state) lower boundary in the panel. If this value is set, the value is initially converted to the nearest value >= left during input, only then SetParameter is called for the cut.

double right;
(defined when PF_RIGHT flag is set in state) upper boundary in the panel. If this value is set, the value is initially converted to the nearest value <= right during input, only then SetParameter is called for the cut.

The most frequently used formats are defined.

PFPercent – presentation in percents with two digits after decimal point, normal font of the title, no restrictions.

PFAngle – presentation in degrees, normal font, no restrictions.

PFMetric – presentation in millimeters with three digits after decimal point, normal font, no restrictions.

PFNumber – presentation as a number with two digits after decimal point, normal font, no restrictions.

PFAngleS – presentation in degrees, symbol font, no restrictions.

PFPercentSym – presentation in percents with two digits after decimal point, normal font, allowable range is (-1, 1).

PFPercent0 – presentation in percents with two digits after decimal point, normal font, allowable range is (0, +∞).

Choosing format, keep in mind that the lower and upper boundaries will be used for input from the panel only. Do not rely on these restrictions in IsCorrect function.

Each value of diamond’s parameter is marked with a color that corresponds to a quality of this parameter in the grading system. It can be convenient to set for some parameter the list of parameters for quality checking. For example, each grading system contains either pavilion angle or pavilion height and never both these parameters. But these diamond parameters are related, and it is convenient to see the color of the field in the panel without regard for which of the two parameters (angle or height) the grading system uses. To define the set of parameters for quality checking it is necessary to set colorList pointer to an array of parameters. Parameters will be taken from this array until one is found for which a grade exists or until DC_QualityLast value is found, which is interpreted as the end of the array.

For most main parameters the presentation in the panel is defined as follows.

	Parameter
	Displayed name of parameter
	Output format
	Quality checking list

	DC_Diameter
	D
	PFMetric
	–

	DC_CrownAngle
	(
	PFAngleS
	DC_CrownAngle, DC_CrownAngle_Table

	DC_CrownAngle_Table
	(
	PFAngleS
	DC_CrownAngle_Table, DC_CrownAngle

	DC_PavilionAngle
	(
	PFAngleS
	DC_PavilionAngle, DC_PavilionDepth

	DC_PavilionDepth
	Hp
	PFPecent0
	DC_PavilionDepth, DC_PavilionAngle

	DC_CrownHeight
	Hc
	PFPecent0
	DC_CrownHeight, DC_TableDiameter

	DC_TableDiameter
	T
	PFPecent0
	DC_TableDiameter, DC_CrownHeight

	DC_GirdleThickness
	Gi
	PFPecent0
	DC_GirdleThickness

	DC_GirdleRatio
	Rt
	PFNumber
	DC_GirdleRatio

	DC_Culet
	Cu
	PFPercent0
	DC_Culet

For non-standard parameters these definitions looks like the following:

	Parameter
	Displayed name of parameter
	Output format
	Quality checking list

	DC_UserParameterPercent+i
	Pi
	PFPercent
	DC_UserParameterPercent+I

	DC_UserParameterAngle+i
	Ai
	PFAngle
	DC_UserParameterAngle+I

	DC_UserParameterNumber+i
	ni
	PFNumber
	DC_UserParameterNumber+i

	DC_UserParameterMetric+i
	mi
	PFMetric
	DC_UserParameterMetric+I

As a rule, to work with such parameters it is enough to choose them from the corresponding parameter group and redefine only the name of the line in the panel.

